Section C

Question Number	Correct Answer	Reject	Mark
16(a)(i)	CI H 	Skeletal / structural formulae	(1)

Question Number	Correct Answer	Reject	Mark
16(a)(ii)	Read the whole answer first		(2)
	Any two from		
	 (Higher boiling temperature) because it has stronger/more London forces 	Any reference to breaking covalent bonds scores (0) overall	
	 (Because it has) more electrons (66 compared with 50) 		
	IGNORE		
	References to larger electron cloud / higher electron density / greater M_r / incorrect 'counting' of electrons in either or both molecules		
	 1,1,1-trichloroethane has dipole-dipole interactions 		
	 (Because the molecule is polar due to) polar C-Cl bonds 		
	OR		
	Cl is more electronegative than C OR Cl is more electronegative than H		
	OR		
	Cl atoms on same side (of molecule)		
	OR		
	C-Cl dipoles do not cancel		
	Hexane has only London forces		

Question Number	Correct Answer	Reject	Mark
16(a)(iii)	Because they damage the ozone layer OR (Halothane products like) 1,1,1-trichloroethane are narcotic inhalants / poisonous / toxic	Any statement that this compound is a CFC / forms Cl ₂ (on breaking down)	(1)
	IGNORE		
	References to just:		
	 formation of chlorine radicals formation of CI carcinogen 		

Question Number	Correct Answer	Reject	Mark
16(b)(i)	ICl is a stronger electrophile / better electrophile	Any references to CI attacking the C=C	(1)
	Allow a correct description of an electrophile even if the term is not used. e.g. ICl has a vacancy for a bonding pair of electrons		
	OR		
	the ICl (bond) is polar		
	NOTE:		
	ALLOW the ICl (bond) is more polar		
	OR		
	Mention of presence of the $I^{\delta+}$ (in ICI)		
	ALLOW		
	'It' for ICl		

Question Number	Correct Answer	Reject	Mark
16(b)(ii)	$I \qquad Cl \\ \qquad \qquad \\ CH_3(CH_2)_7 - C - C - (CH_2)_7COOH \\ \qquad \qquad \\ H \qquad H$ I and Cl can be interchanged and on either side $Look \ out \ for \ only \ I \ or \ Cl \ added \ without hydrogen, also 2I and 2Cl \ added.$	I and Cl on the same carbon	(1)

Question Number	Correct Answer	Reject	Mark
16(b)(iii)	To prevent formation of free radicals	Causes oxidation	(1)
	OR	C-CI breaks	
	To prevent (free radical) substitution		
	OR		
	To prevent (I-Cl) bonds breaking homolytically		
	ALLOW		
	UV causes it to react / to decompose		
	IGNORE light causes it to react / to decompose		

Question Number	Correct Answer	Reject	Mark
16(b)(iv)	ALL THREE oxidation numbers must be correct:		(2)
	(Iodine monochloride) +1		
	ALLOW 1+		
	(Iodide ion) -1		
	ALLOW 1-		
	(Iodine) 0		
	(1)		
	(Ionic equation)		
	$ICI + I^- \rightarrow I_2 + CI^-$		
	Ignore state symbols even if incorrect		
	Both partial and full charges on ICl are acceptable, provided they are the right way around (1)		

Question Number	Correct Answer	Reject	Mark
16(c)	(Indicator)		(2)
	Starch (solution) (1)		
	(Colour change from) Blue-black to colourless	No M2 if states "From	
	ALLOW Blue to colourless OR Black to colourless	purple to"	
	IGNORE References to 'clear' (1)		
	Mark independently		

In 16(d) penalise incorrect units once **only**

Question Number	Correct Answer	Reject	Mark
16(d)(i)	Number of moles of thiosulfate =		(1)
	$\frac{20.0 \times 0.100}{1000} = 2(.00) \times 10^{-3} / 0.002(00)$		

Question Number	Correct Answer	Reject	Mark
	$(2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow) S_4O_6^{2-} + 2I^-$ IGNORE state symbols even if incorrect		(1)

ALLOW TE in all remaining parts from the previous part(s) **Calculators needed!**

PENALISE rounding errors in (d)(v) to (d)(vii) only once Also penalise 1 SF in (d)(v) to (d)(vii) only once

Ī	Question	Correct Answer	Reject	Mark
	Number			
Ī	16(d)(iii)	Number of moles of iodine		(1)
		$= 0.002(00) \div 2$		
		$= 1(.00) \times 10^{-3} / 0.001(00) $ (mol)		

Question	Correct Answer	Reject	Mark
Number			
16(d)(iv)	1(.00) x 10 ⁻³ / 0.001(00) (mol)		(1)

Question Number	Correct Answer	Reject	Mark
16(d)(v)	(0.001(00) - 0.000365) = 6.35 x 10 ⁻⁴ / 0.000635 (mol)		(1)

Question	Correct Answer	Reject	Mark
Number			
16(d)(vi)	(0.000635 x 100 OR 0.000635 x 500)		(1)
	0.2(00)		
	= 0.3175 (mol)		

Question Number	Correct Answer	Reject	Mark
16(d)(vii)	0.3175 x 2 x 126.9 = 80.5815 (g)		(1)
	If student uses A_r for I = 127, final answer equals 80.645 (g)		

If d(iii)/(iv) is 0.002 this gives 0.001635, 0.8175 and 207.4815 for (v) to (vii)

If d(iii)/(iv) is 0.0005 this gives 0.000135, 0.0675 and 17.1315 for (v) to (vii)

Question Number	Correct Answer	Reject	Mark
16(e)	(Sample titre) Higher and (Iodine value) Lower		1

(Total for Section C = 19 Marks)

TOTAL FOR PAPER = 80 MARKS