Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
	ALLOW An element with an unpaired electron	A lone electron	
	IGNORE Reference to neutral species /lack of charge	Charged particle with an unpaired electron	

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	či Ci → 2ci°	Cl without •	(1)
	Half arrows going from bond to CI or just beyond and product 2CI• / CI• + CI•		

Question Number	Acceptable Answers		Reject	Mark
21a(iii)	$C_2H_6+Cl\bullet \to C_2H_5\bullet + HCl$ ALLOW Structural formulae e.g. CH_3CH_3 OR displayed IGNORE Production of C_2H_5Cl from $C_2H_5\bullet$ first step is correct Propagation The second mark is independent	(1)(1)	C ₂ H ₅ ⁺	(2)
	the first			

Question Number	Acceptable Answers	Reject	Mark
21a(iv)	$C_2H_5 \bullet + C_2H_5 \bullet \rightarrow C_4H_{10}$ ALLOW Structural formulae e.g. $CH_3CH_2 \bullet$ /• CH_3CH_2 OR displayed IGNORE $CI \bullet + CI \bullet \rightarrow CI_2$	Methyl or propyl radicals	(1)

Question Number	Acceptable Answers	Reject	Mark
21b(i)	σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond (1) π bond above and below σ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond (1) Both bonds must be labelled for 2 marks.		(2)

Question Number	Acceptable Answers	Reject	Mark
*21b(ii)	MP1 σ bond remains ALLOW The product contains σ bonds only (1) MP2 π bonds break because they are weaker (than σ bonds) ALLOW π bonds break because σ bonds are stronger (1) MP3 Breaking the π bond results in carbocation intermediate / positively charged carbon forming OR π orbital overlap is lateral/ sideways /between parallel orbitals (making π bonds break/ weak) OR The σ bonds are much stronger (than the π bond) because of more effective (orbital) overlap		(3)

Question Number	Acceptable Answers		Reject	Mark
21(b)(iii)	From: Purple/ pink (solution) To: colourless	(1)	To brown	(2)
	H H 	(1)	Molecular/ structural/ skeletal formulae	
	Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH		C bonded to H of OH	

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Second mark depends on use of bromine/ solution of bromine for test.		(2)
	EITHER Test: add bromine water / Br ₂ (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)		
	From: brown/ red-brown/orange/ yellow To: colourless (1) OR Add bromine / Br ₂ (1)		
	From: brown/ red-brown To: colourless (1)		

Question Number	Acceptable Answers		Reject	Mark
21(b)(v)	Curly arrow from C=C double bond to $H^{\delta+}$ HBr and curly arrow from H-Br bond to Br	(1) of (1) (1)	Half	(4)

Question Number	Acceptable Answers	Reject	Mark
21(c)	$/\!\!\!/ + H_2 \rightarrow /\!\!\!\!/$	Use of H, H ⁺	(2)
	(1)		
	Suitable catalyst nickel/ platinum/ palladium (1)	Zeolite catalyst	
	Ignore references to temperature, pressure, uv light		

(Total for Question 21 = 20 marks)

TOTAL FOR PAPER = 80 MARKS