| Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--|------| | 21(a)(i) | Species/ atom/ molecule/ particle with an unpaired electron | Just "with a single electron" | (1) | | | ALLOW An element with an unpaired electron | A lone electron | | | | IGNORE
Reference to neutral species /lack
of charge | Charged particle with an unpaired electron | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|--------------|------| | 21(a)(ii) | či Ci → 2ci° | Cl without • | (1) | | | Half arrows going from bond to CI or just beyond and product 2CI• / CI• + CI• | | | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|-----------------------------------|--|------| | 21a(iii) | $C_2H_6+Cl\bullet \to C_2H_5\bullet + HCl$ ALLOW Structural formulae e.g. CH_3CH_3 OR displayed IGNORE Production of C_2H_5Cl from $C_2H_5\bullet$ first step is correct Propagation The second mark is independent | (1)(1) | C ₂ H ₅ ⁺ | (2) | | | the first | | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|---------------------------|------| | 21a(iv) | $C_2H_5 \bullet + C_2H_5 \bullet \rightarrow C_4H_{10}$ ALLOW Structural formulae e.g. $CH_3CH_2 \bullet$ /• CH_3CH_2 OR displayed IGNORE $CI \bullet + CI \bullet \rightarrow CI_2$ | Methyl or propyl radicals | (1) | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--------|------| | 21b(i) | σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond (1) π bond above and below σ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond (1) Both bonds must be labelled for 2 marks. | | (2) | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|--------|------| | *21b(ii) | MP1 σ bond remains ALLOW The product contains σ bonds only (1) MP2 π bonds break because they are weaker (than σ bonds) ALLOW π bonds break because σ bonds are stronger (1) MP3 Breaking the π bond results in carbocation intermediate / positively charged carbon forming OR π orbital overlap is lateral/ sideways /between parallel orbitals (making π bonds break/ weak) OR The σ bonds are much stronger (than the π bond) because of more effective (orbital) overlap | | (3) | | | | | | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|-----|--|------| | 21(b)(iii) | From: Purple/ pink (solution) To: colourless | (1) | To brown | (2) | | | H H
 | (1) | Molecular/
structural/
skeletal formulae | | | | Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH | | C bonded to H
of OH | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|--------|------| | 21(b)(iv) | Second mark depends on use of bromine/ solution of bromine for test. | | (2) | | | EITHER Test: add bromine water / Br ₂ (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1) | | | | | From: brown/ red-brown/orange/ yellow To: colourless (1) OR Add bromine / Br ₂ (1) | | | | | From: brown/ red-brown To: colourless (1) | | | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|-------------------------|--------|------| | 21(b)(v) | Curly arrow from C=C double bond to $H^{\delta+}$ HBr and curly arrow from H-Br bond to Br | (1)
of
(1)
(1) | Half | (4) | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--------------------------|------| | 21(c) | $/\!\!\!/ + H_2 \rightarrow /\!\!\!\!/$ | Use of H, H ⁺ | (2) | | | (1) | | | | | Suitable catalyst nickel/ platinum/
palladium (1) | Zeolite catalyst | | | | Ignore references to temperature, pressure, uv light | | | (Total for Question 21 = 20 marks) **TOTAL FOR PAPER = 80 MARKS**