Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	(Different) boiling temperatures/ boiling points		(1)
	ALLOW Range of boiling temperatures		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	Cracking: breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/smaller molecules	Just "Breaking a hydrocarbon" Just "Breaking a molecule"	(2)
	OR breaking a hydrocarbon/ alkane to give smaller molecules	Breaking a hydrocarbon to form branched chains or ring	
	OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen (1)	structures	
	Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compound		
	ALLOW Specific examples (1)		
	IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)		

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Look at final answer: +71 (kJ mol ⁻¹) scores 3 marks -71/ 71 (kJ mol ⁻¹) scores 2 marks -5825 (kJ mol ⁻¹) scores 1 mark		(3)
	Method: $C_4H_{10} \rightarrow C_3H_6 + CH_4$ $(+13/2 O_2)$ $/$ $(+13/2 O_2)$ -2877 $/$ $-2058-890$ $/$ -2948		
	$4CO_2 + 5H_2O$		
	MP1 Labelled cycle OR use of $\Delta H = \sum \Delta H_{\text{combustion}} \text{ reactants } - \sum \Delta H_{\text{combustion}} \text{ products} $ (1)		
	MP2 $\Delta H = (-2877 - (-2058 + (-890))$ (1)		
	MP3 = $+71 \text{ (kJ mol}^{-1}$) (1)	Incorrect units	

Question Number	Acceptable Answers	Reject	Mark
20(a)(iv)	$C_4H_{10} \rightarrow C_2H_6 + C_2H_4$ OR $C_4H_{10} \rightarrow C_4H_8 + H_2$ OR $C_4H_{10} \rightarrow 2C_2H_4 + H_2$ ALLOW	$C_4H_{10} \rightarrow C_3H_6 + CH_4$ Charged products eg $C_2H_5^+$	(1)
	Breakdown of multiple butanes Ignore state symbols, even if incorrect	Free radicals eg C ₂ H ₅ •	

Question Number	Acceptable Answers	Reject	Mark
20b(i)	Look at final answer: -2050 (kJ mol ⁻¹) or anything correctly rounded from -2046.528 (-2047, -2046.5, -2046.53) scores 3 marks		(3)
	+2050/ 2050 (kJ mol ⁻¹) scores 2 marks		
	Incorrect rounding scores 2 marks		
	Correct value without sign scores 2 marks		
	Energy transferred = (200 x 4.18 x 34.0) =28424 (J) IGNORE Sign if given (1)		
	Mol pentane =(1.0/72) = 0.01389 / 0.0139 (1)		
	$\Delta H = - (-28424 \div (1/72 \times 1000))$		
	= -2046.528 (kJ mol ⁻¹)		
	ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 (1)		
	NOTE Use of 0.0139 mol gives -2044.9 (kJ mol ⁻¹) giving 3 marks Use of 0.0138 mol gives -2059.7 (kJ mol ⁻¹) giving 2 marks Use of 0.014 mol gives -2030.29 (kJ mol ⁻¹) giving 2 marks		
	Ignore SF except one or two		

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	Incomplete combustion OR Loss of pentane by evaporation ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Incomplete reaction Loss of water by evaporation Heat losses Conditions not standard Measuring errors Pentane impure	(1)

Question Number	Acceptable Answers	Reject	Mark
20(b)(iii)	Pentane is very volatile/ has low boiling temperature so risk of explosion		(1)
	OR Has high flammability	Just "it is flammable"	
	IGNORE Reaction is very exothermic	Vapour is toxic Combustion products/ CO toxic	

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ Allow multiples Ignore state symbols even if incorrect		(1)

Question Number	Acceptable Answers		Reject	Mark
20(c)(ii)	Bonds broken are four C-C twelve C-H			(2)
	eight O=O	(1)	O-O single bonds	
	Bonds made are ten C=O			
	twelve O-H	(1)	C-O single bonds	
	ALLOW TE from (c)(i)			
	If all five bonds are named but formulae not given eg oxygen- oxygen bonds, max 1			
	If all five bonds are correctly identified by formula but number are incorrect or missing, max 1	ers		

Question Number	Acceptable Answers	Reject	Mark
20(c)(iii)	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken OR	Just"more bonds are made than broken"	(1)
	Energy released forming new bonds > energy needed to break old bonds OR	Answers referring to energy needed to make bonds	
	The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Energy contained by bonds in reactants> energy contained by bonds in products	

(Total for question 20 = 16 marks)