Question Number	Acceptable Answers	Reject	Mark
19(a)	Mg(g) → Mg ⁺ (g) + e ⁽⁻⁾ ALLOW Mg(g) — e ⁽⁻⁾ → Mg ⁺ (g) Loss of electron to form Mg ⁺ (1 IGNORE (g) sign on electron State symbols ALLOW Provided the equation involves magnesium, even if electron is	Formation of Mg ²⁺	(2)
	added to the wrong side.	1)	

Question Number	Acceptable Answers	Reject	Mark
19(b)	(1s ²) $2s^22p^6 3s^23p^1$ ALLOW Capital s and/or p, subscripts $2p_x^2 2p_y^2 2p_z^2 3p_x^1$ $3p_y^1 / 3p_z^1$ for $3p_x^1$		(1)

Question Number	Acceptable Answers	Reject	Mark
*19(c)(i)	MP1 Mg to Al: Electron removed from Al is from a higher energy level (3p rather than 3s) ALLOW Electron removed in Al is (more) shielded (by 3s) IGNORE Outer electron is further from nucleus Full sub-shell is more stable than part filled sub-shell (1)		(3)
	MP2 Al to Si: Si has one more proton than Al/ has greater nuclear charge, and electrons removed in both cases are 3p / same sub-shell / are equally shielded (1)		
	MP3 EITHER The attraction of the extra proton in Al is less than the effect of the higher energy level/ the shielding		
	OR Electron removed from Si is closer to nucleus (than Al) ALLOW Silicon is smaller in size (1)		

Question Number	Acceptable Answers	Reject	Mark
19(c)(ii)	MP1 S does not follow trend (P is above Si followed by dip in graph from P to S rising again to Cl and Ar) (1)		(3)
	S has one (3)p orbital which has two electrons/ paired electrons/ is fully occupied OR S has $3p_x^2$, $3p_y^1$, $3p_z^1$ OR Electron in box diagram for S ALLOW S has a pair of electrons in the (3)p subshell (1)	Just "S has 3p ⁴ " d orbital	
	A paired electron is easier to remove OR paired electrons repel each other ALLOW half filled sub-shell (in P) is stable (1)	P has a half filled orbital	

Question Number	Acceptable Answers	Reject	Mark
19(d)	Four x round Si sharing one • with each Cl (1) Seven • round each Cl sharing one x with each Si (1) : CL: • * : CL: • * : CL:		(2)
	ALLOW Reversed symbols		

Question Number	Acceptable Answers	Reject	Mark
*19(e)(i)	MP1 I / anion becomes distorted / not spherical. May be shown in a		(3)
	diagram (1)	Iodine becomes distorted Just "electrons in outer shell are	
	Mg ²⁺ has high(er) charge and small(er) radius/ Mg ²⁺ has high charge density	attracted"	
	MP3 Bonding in magnesium iodide has some covalent character	Atoms of Mg have a small (atomic) radius	
	OR Orbitals of Mg ²⁺ and I ⁻ overlap/ Mg ²⁺ shares some of the I ⁻ electrons		
	OR Mg ²⁺ and I ⁻ ions are not completely separate (1)		

Question Number	Acceptable Answers	Reject	Mark
19(e)(ii)	Experimental/ Born Haber cycle and theoretical/ calculated lattice energies are different OR Experimental/ Born Haber cycle lattice energy is more exothermic/ more negative than theoretical/ calculated lattice energy ALLOW Greater for more negative IGNORE	Just "Compare Experimental/ Born Haber cycle and theoretical/ calculated lattice energies" Use of electron	(1)
	Comments about melting temperature	density map	

(Total for Question 19 = 15 marks)