Answer all the questions.

A student investigates the reaction between iodine, I_2 , and propanone, $(CH_3)_2CO$, in the presence of aqueous hydrochloric acid, HCl(aq).

The results of the investigation are shown below.

Results of initial rates experiments

experiment	[(CH ₃) ₂ CO(aq)] / mol dm ⁻³	[HC <i>l</i> (aq)] / mol dm ⁻³	initial rate / mol dm ⁻³ s ⁻¹
1	1.50×10^{-3}	2.00×10^{-2}	2.10 × 10 ⁻⁹
2	3.00×10^{-3}	2.00×10^{-2}	4.20 × 10 ⁻⁹
3	3.00×10^{-3}	5.00 × 10 ⁻²	1.05 × 10 ^{−8}

constant for the reaction.
Explain all of your reasoning.

(a) Determine the orders with respect to I_2 , $(CH_3)_2CO$ and HCl, the rate equation and the rate

	[9]
(b)	The student then investigates the reaction of hydrogen, $\rm H_2$, and iodine monochloride, $\rm IC\it L$
	The equation for this reaction is shown below.
	$H_2(g) + 2ICl(g) \longrightarrow 2HCl(g) + I_2(g)$
	The rate equation for this reaction is shown below.
	$rate = k[H_2(g)] [ICl(g)]$
	Predict a possible two-step mechanism for this reaction. The first step should be the rate-determining step.
	step 1
	step 2[2]
	[Total: 11]

2 In aqueous solution, benzenediazonium chloride, C₆H₅N₂C*l*, decomposes above 10 °C.

$$\mathrm{C_6H_5N_2C}\mathit{l}(\mathrm{aq}) \ + \ \mathrm{H_2O(I)} \ \longrightarrow \ \mathrm{C_6H_5OH(aq)} \ + \ \mathrm{N_2(g)} \ + \ \mathrm{HC}\mathit{l}(\mathrm{aq})$$

A student investigates the rate of this reaction using an excess of water at 50 °C. The student takes measurements at intervals during the reaction and then plots his experimental results to give the graph shown below.

(a) The student uses half-life to suggest the order of reaction with respect to $C_6H_5N_2CL$

What is meant by the <i>half-life</i> of a reaction?	
	[1]
Confirm the order of reaction with respect to C ₆ H ₅ N ₂ C <i>L</i>	
Show your working on the graph.	

.....

(ii)

	(iii)	What would be the effect, if any, on the half-life of this reaction of doubling the initial concentration of $\rm C_6H_5N_2Cl?$
		[1]
(b)	The	student predicts that the rate equation is: rate = $k[C_6H_5N_2Cl]$.
	(i)	Using the graph and this rate equation, determine the rate of reaction after 40 s.
		Show your working on the graph.
		rate =units[3]
	(ii)	Calculate the rate constant, <i>k</i> , for this reaction and give its units.
		k = units [2]
(0)	Tho	
(c)		order of this reaction with respect to H ₂ O is effectively zero.
	Exp	lain why.
		[1]

© OCR 2013 Turn over

[Total: 10]

4 Nitrogen dioxide reacts with ozone as shown below.

$$2\mathsf{NO}_2(\mathsf{g}) \; + \; \mathsf{O}_3(\mathsf{g}) \; \longrightarrow \; \mathsf{N}_2\mathsf{O}_5(\mathsf{g}) \; + \; \mathsf{O}_2(\mathsf{g})$$

(a) The kinetics of the reaction between ${\rm NO}_2$ and ${\rm O}_3$ was investigated and the following experimental results were obtained.

experiment	[NO ₂ (g)] /moldm ⁻³	[O ₃ (g)] /moldm ⁻³	initial rate /moldm ⁻³ s ⁻¹
1	0.00150	0.00250	4.80 × 10 ⁻⁸
2	0.00225	0.00250	7.20 × 10 ⁻⁸
3	0.00225	0.00500	1.44 × 10 ⁻⁷

(i)	Determine the rate e	guation and rate	constant for the	reaction of	$NO_{\alpha}(a)$ a	and $O_{\alpha}(c)$
'''	Dotor mino the rate o	qualion and rate	oonotant for the	1 Oddioi1 Of	1100(9)	211G Og

\sim	In your answer you should make clear how your conclusions fit with the experimental
	results.

	(ii)	Suggest a possible two-step mechanism for this reaction.
		[2]
(b)		feasibility of the reaction between ${\rm NO_2}$ and ${\rm O_3}$ is influenced by the enthalpy change and opy change of the reaction and the temperature.
		$2NO_2(g) + O_3(g) \rightarrow N_2O_5(g) + O_2(g)$ $\Delta H = -198 \text{ kJ mol}^{-1}$ $\Delta S = -168 \text{ J K}^{-1} \text{ mol}^{-1}$
	(i)	Explain why this reaction has a negative entropy change.
		[2]
	(ii)	Calculate the value of ΔG , in kJ mol ⁻¹ , at 25 °C for the reaction of NO ₂ with O ₃ .
		$\Delta G = \dots kJ \text{ mol}^{-1}$ [3]
	(iii)	State and explain how the feasibility of this reaction will change with increasing temperature.
		[2]

[Total: 17]

lodide ions, I^- , react with $S_2O_8^{\ 2-}$ ions as shown in the equation below.

$$2I^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$$

A student investigates the rate of this reaction using the initial rates method.

The student measures the time taken for a certain amount of iodine to be produced.

(a) Outline a series of experiments that the student could have carried out using the initial rates method.

How could the results be used to show that the reaction is first-order with respect to both I⁻ and $S_2O_8^{2-}$?

In your answer you should make clear how the results are related to the initial rates.
[4]

- **(b)** In one of the experiments, the student reacts together:

 - $8.0 \times 10^{-2} \, \text{mol dm}^{-3} \, \text{I}^-(\text{aq})$ $4.0 \times 10^{-3} \, \text{mol dm}^{-3} \, \text{S}_2 \text{O}_8^{\,2-}(\text{aq}).$

The initial rate of this reaction is $1.2 \times 10^{-3} \,\text{mol dm}^{-3} \,\text{s}^{-1}$.

The reaction is first-order with respect to I^- and first-order with respect to $S_2O_8^{\ 2-}$.

Calculate the rate constant, *k*, for this reaction. State the units, if any.