Section A

Answer all questions in the spaces provided.

1 The initial rate of the reaction between two gases **P** and **Q** was measured in a series of experiments at a constant temperature. The following rate equation was determined.

rate =
$$k[\mathbf{P}]^2[\mathbf{Q}]$$

1 (a) Complete the table of data below for the reaction between P and Q.

Experiment	Initial [P]/mol dm ⁻³	Initial [Q]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1	0.20	0.30	1.8 × 10 ⁻³
2	0.40	0.60	
3	0.60		5.4 × 10 ⁻³
4		0.90	12.2×10^{-3}

(3 marks)

(Space for working)	
3)	

1 (b) Use the data from Experiment **1** to calculate a value for the rate constant *k* and deduce its units.

Calculation	
Jnits	
J11105	
	(3 marks)

1 (c) Consider the graphs E, F, G and H below.

Write in the box below the letter of the graph that shows how the rate constant k varies with temperature.

(1 mark)

7

2	Propanone and	iodine	react in	acidic	conditions	according t	to the	following	equation.
---	---------------	--------	----------	--------	------------	-------------	--------	-----------	-----------

$$CH_3COCH_3 + I_2 \longrightarrow ICH_2COCH_3 + HI$$

A student studied the kinetics of this reaction using hydrochloric acid and a solution containing propanone and iodine. From the results the following rate equation was deduced.

rate =
$$k[CH_3COCH_3][H^+]$$

.....(1 mark)

(b) When the initial concentrations of the reactants were as shown in the table below, the initial rate of reaction was found to be 1.24×10^{-4} mol dm⁻³ s⁻¹.

	initial concentration / mol dm ⁻³		
CH ₃ COCH ₃	4.40		
I ₂	5.00×10^{-3}		
H ⁺	0.820		

Use these	data to	calculate	a value	for th	e rate	constant,	k, for	the	reaction	and	give i	its
units.												

Calculation	 	
Units	 	
		(3 marks)

(c)	Deduce how the initial rate of reaction changes when the concentration of iodine is
	doubled but the concentrations of propanone and of hydrochloric acid are unchanged

.....(1 mark)

(d) The following mechanism for the overall reaction has been proposed.

Step 1
$$CH_3COCH_3 + H^+ \longrightarrow H - C - C - C - CH_3$$
 $H - C - C - C - CH_3$
 $H - C - C - C - CH_3$
 $H - C - C - C - CH_3$

Step 2
$$H - \overset{H}{\overset{}_{\stackrel{}{C}}} - \overset{+}{\overset{}_{\stackrel{}{C}}} - CH_3 \longrightarrow \overset{H}{\overset{}_{\stackrel{}{C}}} = \overset{C}{\overset{}{C}} - CH_3 + H^+$$

Step 3
$$H$$
 $C = C - CH_3 + I_2 \longrightarrow ICH_2 - C - CH_3 + I^ H$
 OH
 H

Use the rate equation to suggest which of the four steps could be the rate-determining step. Explain your answer.

Rate-determining step

Explanation

(2 marks)

(e) Use your understanding of reaction mechanisms to predict a mechanism for Step 2 by adding one or more curly arrows as necessary to the structure of the carbocation below.

Step 2
$$H - C - C - CH_3 \longrightarrow H = C - CH_3 + H^+$$
 $H = OH$

(1 mark)

8

SECTION A

Answer all questions in the spaces provided

- 3 Kinetic studies enable chemists to suggest mechanisms for reactions.
 - (a) The following data were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Experiment		Initial concentration of	Initial rate/		
	$\mathbf{A}/\mathrm{mol}\ \mathrm{dm}^{-3}$	$\mathbf{B}/\text{mol dm}^{-3}$	$mol dm^{-3}s^{-1}$		
1	0.12	0.15	0.32×10^{-3}		
2	0.36	0.15	2.88×10^{-3}		
3	0.72	0.30	11.52×10^{-3}		

(i)	Deduce the order of reaction with respect to A .
(ii)	Deduce the order of reaction with respect to B .
	(2 marks)

(b) The following data were obtained in a series of experiments on the rate of the reaction between NO and O_2 at a constant temperature.

Experiment	Initial concentration of	Initial concentration of	Initial rate/		
_	NO/mol dm ⁻³	$O_2/\text{mol dm}^{-3}$	$mol dm^{-3}s^{-1}$		
4	5.0×10^{-2}	2.0×10^{-2}	6.5×10^{-4}		
5	6.5×10^{-2}	3.4×10^{-2}	To be calculated		

The rate equation for this reaction is

$$rate = k[NO]^2[O_2]$$

(i)	Use the data from Experiment 4 to calculate a value for the rate constant, k , at this
	temperature, and state its units.

Value of	<i>k</i>	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

(ii)	Calculate a value for the initial rate in Experiment 5.

				•••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(iii) Using the rate equation, a scientist suggested a mechanism for the reaction which consisted of the two steps shown below.

Step 1
$$NO + NO \rightarrow N_2O_2$$

Step 2
$$N_2O_2 + O_2 \rightarrow 2NO_2$$

Which did the scientist suggest was the rate-determining step?

 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		(5 marks)