2 Ethanoic acid, CH₃COOH, is used to make esters.

Some information about two of the processes used to make ethanoic acid is given below.

Process 1

This is a one-step process that involves the reaction of methanol with carbon monoxide.

$$\text{CH}_3\text{OH} + \text{CO} \rightarrow \text{CH}_3\text{COOH}$$

The conditions used are 180 °C and 30 atmospheres pressure. A rhodium/iodine catalyst is used.

The percentage yield for this process is 99%.

Process 2

This involves the oxidation of naphtha, a fraction obtained from crude oil.

Liquid naphtha is oxidised using air at a temperature of 180 °C and 50 atmospheres pressure. No catalyst is needed.

A large variety of other products are also formed in this oxidation.

(a)	Suggest three advantages of making ethanoic acid using Process 1 rather than Process 2 .				
	[3				

© OCR 2012 Turn over

(b) The other products formed in Process 2 are carboxylic acids, aldehydes and ketones.

A research chemist investigates some of these other products of **Process 2**.

(i) The research chemist isolates product, J.

The infrared spectrum of \mathbf{J} is shown below.

The chemist also finds that 0.172g of a pure sample of $\bf J$ contains $2.00 \times 10^{-3} \, \text{mol}$ of $\bf J$. Suggest, with reasons, **one** possible structure for $\bf J$.

In your answer you should link the evidence with your explanation.
[E]

	(ii)	The chemist isolates another product, the carboxylic acid, K .
		\mathbf{K} has the molecular formula $\mathbf{C_4H_8O_2}$.
		Suggest a possible structure and name for K .
		structure
		name[2]
(c)	Eth	anoic acid is used in the manufacture of the ester, propyl ethanoate.
		scribe how ethanoic acid is converted into propyl ethanoate. ude an equation in your answer.
	•••••	
	•••••	
		[4]
		[Total: 14]

7 Compound **X** and compound **Y** react together to make an ester **Z**. Samples of **X** and **Y** were analysed by a research chemist. A summary of the chemist's results are shown below.

Analysis of compound X

type of analysis	evidence
infrared spectroscopy	absorption at 1720 cm ⁻¹ and a very broad absorption between 2500 and 3300 cm ⁻¹
percentage composition by mass	C, 48.65%; H, 8.11%; O, 43.24%
mass spectrometry	molecular ion peak at m/z = 74.0

Analysis of compound Y

infrared spectrum of Y

mass spectrum of Y

Use this information to suggest the identity of compound ${\bf X}$, compound ${\bf Y}$ and ester ${\bf Z}$.

V	In your answer you should make clear how your explanation is linked to the evidence.

[Total:10]

8 Compound **X** is a saturated compound that contains carbon, hydrogen and oxygen only.

A scientist analyses a 1.00 g sample of compound **X** and finds it contains 0.133 g of hydrogen and 0.600 g of carbon.

The scientist also analyses compound **X** using mass spectrometry and infrared spectroscopy.

The scientist finds that compound \mathbf{X} reacts with ethanoic acid in the presence of a concentrated sulfuric acid catalyst to make compound \mathbf{Y} .

Compound Y has the molecular formula $C_5H_{10}O_2$.

Using all the information, show the structures of compounds **X** and **Y**. Include an equation for the reaction of compound **X** with ethanoic acid to make compound **Y**.

In	your answer you should link the evidence with your explanation.

	•••
	•••
	•••
	• • •
	•••
	•••
	•••
	•••
[1]	0]

[Total: 10]