	Epsom salts can be used as bath salts to help relieve aches and pains.							
	Epsom salts are crystals of hydrated magnesium sulfate, MgSO ₄ •xH ₂ O.							
	A sample of Epsom salts was heated to remove the water. 1.57g of water was removed leaving behind 1.51g of anhydrous MgSO ₄ .							
	(i)	Calculate the amount, in mol, of anhydrous MgSO ₄ formed.						
		amount = mol [2]						
	(ii)	Calculate the amount, in mol, of H ₂ O removed.						
		amount = mol [1]						
	(iii)	Calculate the value of x in MgSO ₄ • x H ₂ O.						

x =[1]

		4	
Soc	dium	tartrate and copper(II) nitrate are both salts.	
(a)	(a) Sodium tartrate is a salt of tartaric acid. The formula of tartaric acid can be represented H _x A. In this formula, x is the number of H ⁺ ions that can be replaced by metal ions to salts.		
	In t	tudent carries out a titration to find the value of x in the formula of tartaric acid, H_xA . he titration, 25.00 cm ³ of 0.0500 moldm ⁻³ tartaric acid, H_xA , exactly reacts with 12.50 cm ³ 0.200 moldm ⁻³ sodium hydroxide, NaOH. A solution of sodium tartrate is produced.	
	(i)	Calculate the amount, in mol, of H _x A used.	
	(ii)	amount = mol [1] Calculate the amount, in mol, of NaOH used.	
	(iii)	$amount = \dots \qquad mol \ \ [1]$ Deduce the value for x in the formula of tartaric acid, H_xA .	

2

(b)	A student carries out a titration to find the concentration of some sulfuric acid.					
	The student finds that $25.00\mathrm{cm^3}$ of $0.0880\mathrm{moldm^{-3}}$ aqueous sodium hydroxide, NaOH, is neutralised by $17.60\mathrm{cm^3}$ of dilute sulfuric acid, $\mathrm{H_2SO_4}$.					
		$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$				
	(i)	Calculate the amount, in moles, of NaOH used.				
		answer = mol [1]				
	(ii)	Determine the amount, in moles, of H ₂ SO ₄ used.				
		answer = mol [1]				
	(iii)	Calculate the concentration, in mol dm ⁻³ , of the sulfuric acid.				
		answer = moldm ⁻³ [1]				
(c)		er carrying out the titration in (b) , the student left the resulting solution to crystallise. White stals were formed, with a formula of $Na_2SO_4^{\bullet x}H_2O$ and a molar mass of 322.1 g mol ⁻¹ .				
	(i)	What term is given to the '•xH ₂ O' part of the formula?				
		[1]				
	(ii)	Using the molar mass of the crystals, calculate the value of x .				

Turn over

[Total: 10]

answer =[2]

© OCR 2010

2	Hydrated aluminium sulfate, $Al_2(SO_4)_3 \bullet x H_2O$, and chlorine, Cl_2 , are used in water treatment.						
	(a)	A st	A student attempts to prepare hydrated aluminium sulfate by the following method.				
		•	The student heats dilute sulfuric acid with an excess of solid aluminium oxide.				
		•	The student filters off the excess aluminium oxide to obtain a colourless solution of $Al_2(SO_4)_3$.				
		(i)	State the formulae of the two main ions present in the solution of $Al_2(SO_4)_3$.				
			and [2]				
		(ii)	Write an equation for the reaction of aluminium oxide, Al_2O_3 , with sulfuric acid.				
			Include state symbols.				
			[2]				
	((iii)	What does '• \mathbf{x} H ₂ O' represent in the formula $Al_2(SO_4)_3$ • \mathbf{x} H ₂ O?				
			[1]				
	((iv)	The student heats 12.606 g of $Al_2(SO_4)_3 \bullet xH_2O$ crystals to constant mass.				
			The anhydrous aluminium sulfate formed has a mass of 6.846 g.				
			Use the student's results to calculate the value of x .				
			The molar mass of $Al_2(SO_4)_3 = 342.3 \mathrm{g}\mathrm{mo}\Gamma^1$.				

 $x = \dots [3]$