Mark Scheme #### Q1. | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | | В | | 1 | #### Q2. | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (a)(i) | Mark the two points independently, subject to the constraint in Reject column Effect: (Equilibrium) shifts to the right (1) ALLOW: "favours forward reaction" / "increase the amount of product" / "increase the yield (of product)" Reason: Exothermic (in forward direction) (1) NOTE: Just "(equilibrium) shifts in the exothermic direction" scores (1) | "Equilibrium
shifts to left"
will score (0)
for (a)(i) | 2 | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (a)(ii) | First mark: Activation energy for the reaction is too high / (if cooled) molecules would not have enough energy to react / few(er) molecules have the required E_a /more molecules have energy $\geq E_a$ at higher temperatures OR not (technologically) feasible to cool the gases before they enter the converter/costly to cool the gases | | 2 | | | Second mark: (cooling the gases would make) the rate (too) slow /rate is faster if the temperature is high (so the gases are not cooled) (1) | Cooling the gases decreases the yield (of products) /an incorrect Le Chatelier argument | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (a)(iii) | Mark the two points independently, subject to the constraint in Reject column | "Equilibrium
shifts to left"
will score (0) | 2 | | | Effect: (Equilibrium) shifts to the right | for (a)(iii) | | | | ALLOW: "favours forward reaction" / "increase the amount of product" / "increase the yield of product" (1) | | | | | Reason:
Shifts / moves in the direction of fewer (moles
of gas) molecules | " fewer atoms" | | | | ALLOW "shifts in direction of fewer moles (of gas molecules)" (1) | | | | | IGNORE effect on the rate | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--------|------| | (b)(i) | (In NO): +2 / 2+ (1) | | 2 | | | (In NO ₃ ⁻): +5 / 5+ (1) | | | | | NOTE: | | | | | (In NO): Just "2"
AND
(In NO ₃): Just "5" scores (1) | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|--------|------| | (b)(ii) | $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$ | | 1 | | | ACCEPT multiples | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--|------| | (b)(iii) | $Ag \rightarrow Ag^{+} + e^{(-)} / Ag - e^{(-)} \rightarrow Ag^{+}$ ACCEPT multiples | "Ag + e [−] → Ag ⁺ " | 1 | | | IGNORE state symbols, even if incorrect | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (b)(iv) | $3Ag + NO_3^- + 4H^+ \rightarrow 3Ag^+ + NO + 2H_2O$ (2) | | 2 | | | (1) for multiplication of the silver half-equation by three or cq multiple from (b)(ii) | | | | | (1) for rest of equation correct NOTE: Equation must be completely correct for the second mark. | if any e are
left in the
final equation,
second mark | | | | IGNORE state symbols, even if incorrect | cannot be
scored | | ## Q3. | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | | A | | 1 | ### Q4. | Question
Number | Correct Answer | Mark | |--------------------|----------------|------| | | В | 1 | ## Q5. | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | (a) | С | | 1 | | (b) | D | | 1 | ## Q6. | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | (a) | D | | 1 | | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | (b) | D | | 1 | # Q7. | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | (a) | A | | 1 | | Question
Number | Correct Answer | Reject | Mark | |--------------------|----------------|--------|------| | (b) | C | | 1 | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|-----------------|----------------|------| | (a) | 1 Reaction 1: C goes from -4 to +2, | (1) | | 5 | | | 2 H from +1 to 0 (redox reaction) | (1) | H from +2 to 0 | | | | 3 Reaction 2: C goes from +2 to +4 | (1) | | | | | 4 H from +1 to 0 (redox reaction)
Allow from 2(+1) to 0 | (1) | H from +2 to 0 | | | | For each mark both correct oxidation needed | states are | | | | | Additional incorrect oxidation numbers lose 1 mark per reaction | of oxygen | | | | | Allow number followed by charge | | | | | | Penalise missing plus signs only once | | | | | | Penalise wrong use of the terms reduce oxidized only once | ed and | | | | | Penalise correct oxidation states and reaction only once | not a redox | | | | | 5 Reaction 3 no (elements) change (or
number)/details for carbon / hydroge
calculated | | | | | | AND | | | | | | so this is not a redox reaction | | | | | | OR | | | | | | Redox mentioned in reactions 1 and 2 redox' omitted in reaction 3 | but 'not
(1) | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--------------------|------| | * (b) (i) | Any seven from: 1 A higher temperature would increase the yield /favour the forward reaction /produce more hydrogen (1) 2(as) the reaction is endothermic (1) 3 Increased temperature would increase the rate/speed of reaction /make the reaction go faster (1) 4(as) a greater proportion of /more molecules | 'More (successful) | 7 | | | have sufficient /higher/activation energy (to react) 5 Decreased pressure increases the yield /favour the forward reaction /produce more hydrogen (1) 6(as) the forward reaction is favoured with more (gaseous) molecules /mole (1) | collisions' alone | | | | 7 Decreased pressure would decrease the rate of reaction (1) 8(as) collision frequency decreases/less collisions (1) Points may muddle into one another Reverse statements allowed e.g. 'lower temperature decreases yield because reaction is endothermic'. Contradictory statements in each pair lose both marks e.g. 'lower temperature increases yield because reaction is endothermic'. | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (b) (ii) | An excess is used to drive the equilibrium to the right / to ensure all the methane reacts (as the reaction responds to remove steam by Le Chatelier's principle) (1) | to get a better yield
of hydrogen /to allow
reaction to happen
fully / so all the
reactants react / to
make the reaction go
to completion | 2 | | | Methane is more expensive (so it is better to increase the amount of steam) / steam is cheaper /readily available /renewable OR | | | | | Methane is not renewable (1) | Methane is a greenhouse gas / dangers associated with methane e.g. flammable | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|--------|------| | (c) | The catalyst provides an alternative route for the reaction (1) | | 2 | | | (with) a lower activation energy (1) | | | | | Allow 'catalyst lowers activation energy' alone for one mark | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|---|---|------| | (d) (i) | It regenerates /reforms potassium carbonate /reactant(s) (which reduces the cost of the process) OR potassium carbonate can be re-used Allow recycles potassium carbonate | Regenerates some of
the other reactants.
Chemicals are
regenerated | 1 | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|--|------|---|------| | * (d) (ii) | 1 Carbon dioxide / CO ₂ Allow both water and carbon dioxide (| 1) | Water alone | 4 | | | 2 Traps longer wavelength radiation / traps radiation / IR emitted (from the earth) | | Mark is lost if any
mention of UV /
ozone layer depletion | | | | OR Absorbs/traps heat /IR OR Prevents loss of IR / heat | (1) | Absorbs IR / heat from the sun | | | | 3,4 Any two from:
Rising sea levels / flooding | | | | | | Polar ice / ice caps /glacier(s) / glacial / habit ice melting | tat | | | | | Changing (sea /air) currents | | | | | | Changing weather patterns /more extreme weather / climate change (2 | 2) | Increased UV
Increased skin
cancer/melanoma | | | | Other acceptable alternatives only if well justified e.g. more malaria because more breeding areas for mosquitoes | | | | | | But more malaria /desertification /forest fires alone is insufficient | ; | | | | | Three or more correct answers get 2 marks | | | | | | Three or more answers, where some are wrong are marked 1 mark for each correct answer and mark for each incorrect answer e.g. Two correct and one wrong award 1 mark Three correct and two wrong award 1 mark etc. | d -1 | | | | | One on list and one wrong award 1. Ignore neutral statements | | | | | Question | Acceptable Answers | Reject | Mark | |----------|---|--------|------| | Number | 0.0 1 1000 0000 1 000 000 1 | | | | (a)(i) | 2.2 g in 1000 g = 2200 g per 1 000 000 g / 2200 (ppm) (greater than 60) | | 1 | | | OR | | | | | 60ppm = 0.060 (g dm ⁻³) (less than 2.2) | | | | | OR | | | | | 2.2g dm ⁻³ = 0.22% which is more than
60ppm = 0.006%
(Both values needed as neither is given in
question) | | | | | OR | | | | | $2.2 \div 1000 = 2.2 \times 10^{-3}$ and $60 \div 1000000$
= 6×10^{-5} | | | | Question | Acceptable Answers | Reject | Mark | |----------|---|--------|------| | Number | | (1000) | | | (a)(ii) | $Cl_2(g/aq) + 2Br^-(aq) \rightarrow 2Cl^-(aq) + Br_2(aq)$ |) | 2 | | | Correct species (1) | | | | | Balancing and state symbols (1) | e | 1 | | Question | Acceptable Answers | Reject | Mark | |----------|--|-----------------|------| | Number | | | | | (a)(iii) | (Colourless to) yellow / orange / brown / red-brown colour (or any combination of these colours) appears | 'Effervescence' | 1 | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|------------|--------|------| | (a)(iv) | Addition of hydrochloric acid increases concentration of H ⁺ Equilibrium shifts to the left/ favours to backwards reaction / H ⁺ combines with and BrO ⁻ to make H ₂ O and Br ₂ OR | (1) | | 2 | | | The equilibrium will not produce H ⁺ So forward reaction will not occur Standalone marks | (1)
(1) | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|-----------|------| | (a)(v) | The equilibrium shifts to the right / favou
the forward reaction | rs
(1) | 2 | | | To absorb added heat (energy) / in the endothermic / positive ΔH direction | (1) | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--|------| | (a)(vi) | Greater proportion of / more molecules with energy more than (or equal to) activation energy / sufficient energy to react (at higher temperature) ALLOW particles. ALLOW 'overcome' for 'more than'. | Atoms Lowers activation energy Just 'more successful collisions' | 1 | | Question
Number | Acceptable Answers | | Reject | Mark | |--------------------|---|-----|--------|------| | (a)(vii) | Bromine (atoms) are (simultaneously) oxidized from 0 to +1 in BrO - | (1) | | 2 | | | And reduced to -1 in Br | (1) | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|---|------| | (b)(i) | The forward and backward reactions occur at the same rate (1) | 6 | 2 | | | The concentrations or amounts or moles of reactants and products remain constant / intensive or macroscopic properties (e.g. colour) are constant (1) IGNORE reference to 'closed system' | Concentrations of products and reactants are the same | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|--------|------| | (b)(ii) | Equilibrium shifts to the right so more $CO_2(g)$ dissolves / equilibrium shifts to the right so reducing the concentration of $CO_2(aq)$ (1) So amount of CO_2 in atmosphere / gaseous decreases (1) | | 2 | | | Second mark depends on first unless qualified by a near miss | | | | Question | Acceptable Answers | Reject | Mark | |----------|--|-------------------|------| | Number | | | 5 | | (b)(iii) | (Bonds) bend / stretch / vibrate (more)/ | Molecules vibrate | 1 | | | bonds change polarity or dipole (moment) | Bonds break. | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|---|------| | (b)(iv) | Infrared radiation / heat is absorbed by greenhouse gases / by carbon dioxide and water (1) | IR absorbed from
the sun
UV radiation | 2 | | | And one of the following: When energy from the sun is (re-)emitted from the earth's surface (allow 'reflected') OR | | | | | IR / heat cannot escape from earth's atmosphere | | | | | OR IR / heat is (re-)emitted back to the earth (1) | | | | Question
Number | Acceptable Answers | Reject | Mark | |--------------------|--|---|------| | (b)(v) | Anthropogenic climate change is caused by human activity (1) Natural climate change is caused by volcanic eruptions etc (1) Up to any three of the following to a max of (4) Water vapour levels always relatively constant / water levels fluctuate normally / water levels vary only to a small extent CO₂ levels increasing due to (fossil) fuel combustion/deforestation / industrial | | 4 | | | CO₂ molecules absorb more IR radiation than H₂O molecules OR CO₂ molecules have a greater 'greenhouse effect' than H₂O molecules Increase in CO₂ levels has accompanied rise in global temperatures Concern due to melting of ice packs / rising sea levels / flooding / change in | Reference to UV Reference to ozone depletion negates | |