7 Dinitrogen tetroxide, $N_2O_4(g)$, and nitrogen dioxide, $NO_2(g)$, coexist in the following equilibrium.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -57 \text{ kJ mol}^{-1}$

A chemist adds $4.00\,\mathrm{mol}\ \mathrm{NO_2}$ to a container with a volume of $2.00\,\mathrm{dm^3}$. The container is sealed, heated to a constant temperature and allowed to reach equilibrium.

The equilibrium mixture contains 3.20 mol NO₂.

(a) Calculate the value for $K_{\rm c}$ under these conditions.

(b)	The experiment is repeated but the pressure in the container is doubled.
	Explain in terms of $K_{\rm c}$ the effect on the concentrations of NO $_2$ and N $_2$ O $_4$ when the mixture has reached equilibrium.
	[3]
	[Total: 8]

5	Methanol can be prepared industrially by reacting together carbon monoxide and hydrogen. This
	is a reversible reaction:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -94 \text{ kJ mol}^{-1}$

- A chemist mixes together 0.114 mol CO(g) and 0.152 mol H₂(g) in a container.
- The container is pressurised and then sealed. The total volume is 200 cm³.
- The mixture is heated to 500 K and left to reach equilibrium. The volume of the sealed container is kept at 200 cm³.
- The chemist analyses the equilibrium mixture and finds that 0.052 mol CH₃OH has formed.
- (a) Calculate the value of K_c , including units, for the equilibrium at 500 K.

Give your answer to three significant figures.

v	unito	LE J
n.	_ = uriis	

(b)	The chemist repeats the experiment using the same initial amounts of CO and $\rm H_2$. The same procedure is used but the mixture is heated in the 200 cm ³ sealed container to higher temperature than 500 K.								
	As the gas volume is kept at 200 cm ³ , the increased temperature also increases the pressure.								
	 Explain why it is difficult to predict how the yield of CH₃OH would change. 								
	• Explain what happens to the value of K_c .								

.....[4]

[Total: 10]

2	Hydrogon	and indina	react together in	a a roversible	rocation
3	nyulogen	and louine	react together if	i a reversible	reaction

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \qquad \Delta H = -9 \text{ kJ mol}^{-1}$$

A chemist mixes together $2.00\times10^{-3}\,\mathrm{mol}\ H_2(g)$ and $4.00\times10^{-3}\,\mathrm{mol}\ I_2(g)$ in a $1.00\,\mathrm{dm}^3$ container. The chemist seals the container.

The mixture is heated and left to reach equilibrium.

At equilibrium, the mixture contains 3.00 \times 10 $^{-4}$ mol of $\rm H_2$.

(a)	Calculate the ed	quilibrium constant	K	including	unite	if any	for this	equilibrium
(a)	Calculate the et	Juliibi luitt constant	$, N_{\circ}$, including	unno,	II aliy,	101 11115	equilibrium

Give your answer to three significant figures.

/	_	unite	rsi	ı
١,	. —	uiilo	ıυı	ı

(b)	The chemist	repeats t	he experiment	several	times.	In e	ach	experiment,	the	chemist	makes
	one change.										

(i)	The chemist uses	3.00×10^{-3} mol	H ₂ (g) instead of	of 2.00×10	^{–3} mol H₂(g)

Predict whether the amounts of $H_2(g)$, $I_2(g)$ and HI(g) in the equilibrium mixture would be greater, smaller or the same as in the original experiment.

Answer by placing ticks in the appropriate boxes of the table below.

	H ₂ (g)	I ₂ (g)	HI(g)
Greater			
Smaller			
The same			

[2]

(ii)	The chemist heats the mixture to a higher temperature at constant pressure.	
	Explain whether the value of $K_{\rm c}$ would be greater, smaller or the same.	
		[1]
(iii)	The chemist increases the pressure of the mixture at constant temperature.	
	Explain whether the value of $K_{\rm c}$ would be greater, smaller or the same.	
		[1]
		[Total: 9]

© OCR 2013 Turn over