Answer all the questions.

1	The Group	2 element	magnesium	was first	isolated by	y Sir Hum	phry	Davy i	in 1808.

- (a) Magnesium has three stable isotopes, which are ²⁴Mg, ²⁵Mg and ²⁶Mg.
 - (i) Complete the table below to show the atomic structures of ²⁴Mg and ²⁵Mg.

	protons	neutrons	electrons
²⁴ Mg			
²⁵ Mg			

п	\mathbf{r}	١
ı	_	

(ii)	A sample of magnesium contained ²⁴ Mg: 78.60%; ²⁵ Mg: 10.11%; ²⁶ Mg: 11.29%
	Calculate the relative atomic mass of this sample of Mg.
	Give your answer to four significant figures.

	answer =[2	2]
(iii)	Define the term <i>relative atomic mass</i> .	

(b) The reaction between magnesium and sulfuric acid is a redox reaction.

		$Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$
	(i)	Use oxidation numbers to identify which element has been oxidised.
		Explain your answer.
		element oxidised
		explanation
		[2]
	(ii)	Describe what you would see when magnesium reacts with an excess of sulfuric acid.
		[2]
(c)	Eps	som salts can be used as bath salts to help relieve aches and pains.
	Eps	som salts are crystals of hydrated magnesium sulfate, MgSO ₄ • x H ₂ O.
		sample of Epsom salts was heated to remove the water. 1.57g of water was removed ving behind 1.51g of anhydrous ${\rm MgSO_4}$.
	(i)	Calculate the amount, in mol, of anhydrous MgSO ₄ formed.
		amount = mol [2]
	(ii)	Calculate the amount, in mol, of H ₂ O removed.
		amount = mol [1]
	(iii)	Calculate the value of x in MgSO ₄ • x H ₂ O.
		x =[1]
		[Total: 15]

© OCR 2009 Turn over

2	A student	carries out	experiments	using a	acids,	bases	and	salts.
---	-----------	-------------	-------------	---------	--------	-------	-----	--------

(a)	Calcium nitrate, Ca(NO ₃) ₂ , is an example of a salt.
	The student prepares a solution of calcium nitrate by reacting dilute nitric acid, HNO_3 , with the base calcium hydroxide, $Ca(OH)_2$.

(i)	Why is calcium nitrate an example of a salt?
	[1]
(ii)	Write the equation for the reaction between dilute nitric acid and calcium hydroxide. Include state symbols.
	[2]
(iii)	Explain how the hydroxide ion in aqueous calcium hydroxide acts as a base when it neutralises dilute nitric acid.

(b)	A st	udent carries out a titration to find the concentration of some sulfuric acid.
		student finds that $25.00\mathrm{cm^3}$ of $0.0880\mathrm{moldm^{-3}}$ aqueous sodium hydroxide, NaOH, is tralised by $17.60\mathrm{cm^3}$ of dilute sulfuric acid, $\mathrm{H_2SO_4}$.
		$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$
	(i)	Calculate the amount, in moles, of NaOH used.
		answer = mol [1]
	(ii)	Determine the amount, in moles, of H ₂ SO ₄ used.
		answer = mol [1]
	(iii)	Calculate the concentration, in mol dm ⁻³ , of the sulfuric acid.
		answer = moldm ⁻³ [1]
(c)		er carrying out the titration in (b) , the student left the resulting solution to crystallise. White stals were formed, with a formula of $Na_2SO_4 \cdot xH_2O$ and a molar mass of 322.1 g mol ⁻¹ .
	(i)	What term is given to the '•xH ₂ O' part of the formula?
		[1]
	(ii)	Using the molar mass of the crystals, calculate the value of x.

Turn over

[Total: 10]

answer =[2]

3			als called 'acids' have been known throughout history. The word acid comes from the Lat meaning sour. Dilute sulfuric acid, $\rm H_2SO_4$, is a common laboratory acid.	in
	(a)	(i)	State the formulae of two ions released when sulfuric acid is in aqueous solution.	
			[:	2]
		(ii)	A student adds a sample of solid potassium carbonate, $\rm K_2\rm CO_3$, to an excess of dilusulfuric acid.	te
			Describe what the student would see and write the equation for the reaction which take place.	es.
			ŗ	21

(b)	Dilute sulfuric acid reacts with alkalis such as sodium hydroxide.

Solid sodium hydroxide is known as caustic soda. It has a household use as a drain cleaner.

A student believes a box of caustic soda has been accidentally contaminated.

- To prove this, the student dissolves 2.00 g of the impure caustic soda in water and the solution is made up to 250 cm³.
- 25.0 cm³ of this solution of caustic soda is neutralised by 24.60 cm³ of 0.100 mol dm⁻³ dilute sulfuric acid.

$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

(i) Calculate the amount, in moles, of $\rm H_2SO_4$ used.

answer	=	***************************************	mol	[1]
anowon	_		11101	ъ.

(ii) Determine the amount, in moles, of NaOH in the 25.0 cm³ used.

(iii) Calculate the percentage, by mass, of NaOH in the impure caustic soda.

[Total: 10]

© OCR 2010 Turn over