Questions

01.

Which of the following contains the greatest number of hydrogen atoms?

- \blacksquare **A** 2 moles of water, H₂O
- B 1.5 moles of ammonia, NH₃
- C 1 mole of hydrogen gas, H₂
- \square **D** 0.5 moles of methane, CH₄

(Total for question = 1 mark)

Q2.

The human body contains around 0.025 g of iodine molecules, I_2 . Which of the following shows the number of iodine **atoms** in 0.025 g of I_2 ?

The Avogadro constant is 6.02×10^{23} mol⁻¹.

$$\triangle$$
 A $\frac{0.025}{126.9} \times 6.02 \times 10^{23}$

$$\blacksquare$$
 B $\frac{0.025}{253.8} \times 6.02 \times 10^{23}$

$$C = \frac{253.8}{0.025} \times 6.02 \times 10^{23}$$

$$\square$$
 D $\frac{126.9}{0.025} \times 6.02 \times 10^{23}$

(Total for question = 1 mark)

Q3.

The Avogadro constant is $6.0 \times 10^3 \text{ mol}^{-1}$. Therefore the number of **atoms** in 1 mol of carbon dioxide is

$$\triangle$$
 A 2.0 x 10²³

B
$$6.0 \times 10^{23}$$

$$\square$$
 C 1.2 x 10²⁴

Q4.

Oxygen gas, O_2 , can be converted into ozone, O_3 , by passing it through an electric discharge.

$$3O_2(g) \rightarrow 2O_3(g)$$

In an experiment, a volume of $300~\rm cm^3$ of oxygen was used but only 10% of the oxygen was converted into ozone. All volumes were measured at the same temperature and pressure.

The **total** volume of gas present at the end of the experiment, in cm³, was

- **■ B** 210
- **C** 290
- **■ D** 300

(Total for question = 1 mark)

Q5.

Magnesium oxide reacts with dilute hydrochloric acid according to the following equation.

$$MgO(s) + 2HCl(aq) \rightarrow MgCl_{3}(aq) + H_{3}O(l)$$

How many **moles** of magnesium oxide, MgO, are required to neutralize 20 cm^3 of 0.50 mol dm^{-3} hydrochloric acid, HCl?

- **■ B** 0.0050
- **C** 0.010
- ☑ D 0.020

(Total for question = 1 mark)

The equation for the complete combustion of octane is

 $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$

(a) The mass of 10 mol of octane is

(1)

- A 0.66 kg
- **B** 1.14 kg
- D 2.28 kg
- (b) The volume of 1 mol of any gas (measured at room temperature and pressure) is 24 dm³. Hence the volume of oxygen (measured at room temperature and pressure) required for the complete combustion of 10 mol of octane is

(1)

- \square A 240 dm³
- \blacksquare **B** 300 dm³
- \square **D** 6000 dm³

(Total for question = 2 marks)

Q7.

Which of the following gas samples occupies the greatest volume at the same temperature and pressure?

[Relative atomic masses: H = 1; C = 12; O = 16; F = 19; Ne = 20]

- A 1 gram of ethane
- **B** 1 gram of oxygen
- C 1 gram of fluorine
- **D** 1 gram of neon

(Total for question = 1 mark)

I I calmanda		.1	1.			C - 11
Hydrogen	peroxide	decomposes	on ne	eating	as i	TOIIOWS

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

What mass of hydrogen peroxide is required to give 16 g of oxygen gas?

- A 8.5 g
- B 17 g

(Total for question = 1 mark)

Q9.

0.400 g of magnesium ribbon reacted with exactly 22.2 cm³ of hydrochloric acid of concentration 1.50 mol dm^{-3} .

400 cm³ of hydrogen gas was formed, the volume being measured at room temperature and pressure.

In the calculations that follow, use the following molar masses:

$$Mg = 24.0 \text{ g mol}^{-1}$$

 $CI = 35.5 \text{ g mol}^{-1}$

(a) Calculate the amount (in moles) of magnesium used.

(1)

(b) Calculate the amount (in moles) of hydrochloric acid used.

(1)

(c) Calculate the amount (in moles) of hydrogen produced.

[Molar volume of any gas at room temperature and pressure = $24\ 000\ \text{cm}^3\ \text{mol}^{-1}$]

(1)

(d) Show that the calculated amounts of magnesium, hydrochloric acid and hydrogen are consistent with the following equation for the reaction

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

(1)

(e) Calculate the maximum mass of magnesium chloride that would be formed in this reaction. Give your answer to **three** significant figures.

Q10.	Phosphorus(V)	chloride, PCI ₅ ,	reacts with water	according to	the equation
------	---------------	------------------------------	-------------------	--------------	--------------

$$PCl_5(s) + 4H_2O(l) \rightarrow H_3PO_4(aq) + 5HCl(aq)$$

If 1.04 g of phosphorus pentachloride (molar mass = $208 \text{ g} \text{ mol}^{-1}$) is reacted completely with water and the solution made up to 1 dm³, the concentration of the hydrochloric acid in mol dm⁻³ is

- A 0.001
- B 0.005
- 0.025 X C
- **D** 0.250

(Total for Question = 1 mark)

Q11.

A sample of gas was prepared for use in helium-neon lasers. It contained 4 g of helium and 4 g of neon. What is the ratio of helium atoms to neon atoms in the sample?

- A 1:1
- 2.5:1 В
- **⊠** C 1:5
- 5:1 X D

(Total for question = 1 mark)

Q12.

What is the number of **atoms** in 2.8 g of ethene, C_2H_4 ?

DATA

- The molar mass of C_2H_4 is 28 g mol⁻¹ The Avogadro constant is $6.0 \times 10^{23} \ \text{mol}^{-1}$

- \triangle A 1.0×10^{22}
- **B** 6.0×10^{22}
- **C** 1.2×10^{23}
- **D** 3.6×10^{23}

(Total for question = 1 mark)

Q13. The Avogadro constant is $6.0 \times 10^{23} \, \text{mol}^{-1}$. The number of **atoms** in 1 mol of dinitrogen tetroxide, N_2O_4 , is

- \triangle **A** 3.6 × 10²⁴
- **B** 1.8×10^{24}
- \square **C** 6.0 × 10²³
- \square **D** 1.0 × 10²³

(Total for Question = 1 mark)