4 Chemists and biochemists use pK_a values to compare the strengths of different acids. pK_a is a more convenient way of comparing acid strengths than K_a values.

 pK_a values of several naturally occurring Brønsted–Lowry acids are shown in **Table 4.1** below.

common name and source	systematic name	structural formula	р <i>К_а</i> (at 25°С)
benzoic acid (from bark resin)	benzenecarboxylic acid	C ₆ H ₅ COOH	4.19
acetic acid (from vinegar)	ethanoic acid	СН ₃ СООН	4.76
pyruvic acid (formed during metabolism)	2-oxopropanoic acid	СН ₃ СОСООН	2.39
lactic acid (from milk)	2-hydroxypropanoic acid	сн ₃ снонсоон	3.86

Table 4.1

(a)	(i)	What is meant by the term <i>Brønsted–Lowry acid?</i>	
	<i>(</i> 11)		[1]
	(ii)	What is meant by the <i>strength</i> of an acid?	
		In your answer, include an equation for one of the acids in Table 4.1.	
			[2]
	(iii)	Place the four acids in Table 4.1 in order of increasing strength.	
		weakest acid	
		strongest acid	[1]
	(iv)	Aqueous benzoic acid was mixed with aqueous lactic acid. An equilibrium mixture v formed containing conjugate acid—base pairs.	vas
		Complete the equilibrium below to show the components in the equilibrium mixture.	
		C ₆ H ₅ COOH + CH ₃ CHOHCOOH ← +	[1]

(b)	Αqι	eous pyruvic acid was reacted with an aqueous solution of calcium hydroxide.
	(i)	Write an equation for this reaction.
		[1]
	(ii)	Write an ionic equation for this reaction.
		[1]
(c)	The	pH of an acid solution can be calculated from its p $K_{\rm a}$ value.
Calculate the pH of a 0.0150moldm^{-3} solution of pyruvic acid at 25°C .		
		ow all your working. e the pH to two decimal places.

© OCR 2011 Turn over

pH =[4]

(d)	Oxalic acid (ethanedioic acid), C ₂ H ₂ O ₄ , is present in the leaves of rhubarb plants.
	Oxalic acid has two dissociations with $pK_a = 1.23$ and $pK_a = 4.19$.

(i) Draw the structure of oxalic acid.

[1]

(ii) Predict the equations that give rise to each dissociation.

$$pK_a = 1.23$$

$$pK_a = 4.19$$

[2]

(e) The 'magic tang' in many sweets is obtained by use of acid buffers. A sweet manufacturer carried out tasting tests with consumers and identified the acid taste that gives the 'magic tang' to a sweet.

The manufacturer was convinced that the 'magic tang' would give the company a competitive edge and he asked the company's chemists to identify the chemicals needed to generate the required taste. The chemists' findings would be a key factor in the success of the sweets.

The team of chemists identified that a pH of 3.55 was required and they worked to develop a buffer at this pH.

The chemists decided to use one of the acids in **Table 4.1** (page 8) and a salt of the acid to prepare this buffer.

- Deduce the chemicals required by the chemists to prepare this buffer.
- Calculate the relative concentrations of the acid and its salt needed by the chemist to make this buffer.
- Comment on the validity of the prediction that the pH of the sweet would give the sweets the 'magic tang'.

[6

This	This question looks at acids, bases and buffer solutions.		
(a)	Nitr Nitr	ic acid, HNO ₃ , is a strong Brønsted–Lowry acid. ous acid, HNO ₂ , is a weak Brønsted–Lowry acid with a $K_{\rm a}$ value of 4.43 \times 10 ⁻⁴ mol dm ⁻³ .	
	(i)	What is the difference between a strong acid and a weak acid?	
	<i>(</i> ''')	[1]	
	(ii)	What is the expression for the acid dissociation constant, K_a , of nitrous acid, HNO ₂ ?	
		[1]	
	(iii)	Calculate the pH of 0.375 mol dm ⁻³ nitrous acid, HNO ₂ .	
	()	Give your answer to two decimal places.	
		/	
		pH =[2]	
	(iv)	A student suggests that an acid-base equilibrium is set up when nitric acid is mixed with nitrous acid.	
		Complete the equation for the equilibrium that would be set up and label the conjugate acid-base pairs.	
		$HNO_3 + HNO_2 \Longrightarrow \dots + \dots + \dots$	

(b)	Cal	cium hydroxide, Ca(OH) ₂ , is a strong Brønsted–Lowry base.
	(i)	Explain what is meant by the term Brønsted-Lowry base.
		[1]
	(ii)	Calculate the pH of 0.0400 mol dm ⁻³ Ca(OH) ₂ .
		Give your answer to two decimal places.
		pH =[3]
, ,		
(c)	Aqu	ueous calcium hydroxide is added to nitrous acid, HNO ₂ .
	Wri	te the overall equation and the ionic equation for the reaction that takes place.
	ove	rall:
	ioni	c:[2]

- (d) Carbonic acid, H₂CO₃, is a weak Brønsted–Lowry acid formed when carbon dioxide dissolves in water. Healthy blood is buffered to a pH of 7.40. The most important buffer solution in blood is a mixture of carbonic acid and hydrogencarbonate ions, HCO₃⁻.
 - (i) Explain how the carbonic acid—hydrogencarbonate mixture acts as a buffer in the control of blood pH.

In your answer you should explain how equilibrium allows the buffer solution to control the pH.
[5]

(ii) Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1. A patient is admitted to hospital. The patient's blood pH is measured as 7.20.

Calculate the hydrogencarbonate: carbonic acid ratio in the patient's blood.

[5]

[Total: 22]